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We consider, in a linear setting, the three-dimensional problem of the initial stage 
of vertical penetration of blunt solid bodies into an ideal incompressible liquid. 

Problems concerning the interaction of structures with a fluid arose in connection with 
the landing of hydroplanes [i]; these problems were later studied intensively in connection 
with other engineering questions (see [2-4] and the surveys given therein). These problems 
are very involved and, in general, can only be solved numerically. Cases which lend themselves 
to analytical treatment are of special significance for verification of the accuracy of the 
numerical schemes employed. As in other areas of mechanics [5], a large number of such cases 
are associated with the phenomenon of self-similarity. 

Self-similar problems dealing with the penetration of solid bodies (cones or wedges) 
into a fluid were considered, in linear and nonlinear settings, in a variety of papers [3, 4, 
6, 7]. In [6] it was shown that motion of the incompressible fluid during penetration into 
it of a cone is self-similar, providing the penetration velocity is a power of the time. It 
was noted in [i], in a study of penetration, that it is necessary to take into account the 
rise in the free surface of the fluid, which leads to an increase in the wetted surface of 
the body. In [8], in a linear setting, an attempt was made to obtain self-similar solutions 
for a problem involving penetration of an elliptic paraboloid into a fluid at constant velocity; 
moreover, no additional conditions (of Wagner or Karman--Pabst type [2]) were imposed on the 
boundary of the wetted region, a situation which did not guarantee uniqueness of the solution. 
In the present paper we show (in a linear setting, with rise of the free surface of the fluid 
taken into account) that the problem in question is self-similar for penetration velocities 
varying as a power of the time for a wide class of bodies in which the form of the surface 
may be described by a positive homogeneous function. 

An exact analytical solution of the linear three-dimensional problem involving penetra- 
tion into an incompressible fluid is known only for bodies of revolution [2, 9]. Although 
this case, generally speaking, is not self-similar, it does, however, retain certain features 
of self-similarity: at an arbitrary time, wetted regions are circles and are, consequently, 
similar to one another. In what follows, we identify a class of penetration problems in which, 
at each instant, the wetted region varies according to a similarity relationship. This class 
contains all cases for which three-dimensional analytical solutions are known. In particular, 
we obtain exact analytical solutions for the case in which the wetted region is an ellipse. 

i. Statement of the Problem. We consider the problem of penetration of a solid body 
into an initially quiescent weightless ideal incompressible fluid. The fluid occupies the 
halfspace z3~0 The velocity V(t) of the body is directed perpendicular to the plane 
x 3 = 0 forming the free surface of the fluid. We define the origin of a Cartesian coordinate 
system at the point of initial contact of the body with the free surface. Axis x 3 is directed 
into the depth of the fluid; axes x I and x 2 lie along the initial free surface. 

We assume that the angle between the tangent to the body and the free surface is small 
throughout the time interval considered (blunt body assumption). In this case we can use Wag- 
ner's assumption [i] (see also [2]): penetration of the body may be replaced by flow over a 
continuously expanding flat disk, the rate of expansion of which is equal to the rate at which 
the width of the wetted surface of the body increases, while the flow rate is equal to the 
rate of penetration (the problem is solved in a linear setting, i.e., all equations are linear- 
ized and boundary conditions are carried over to the horizontal surface of the fluid, x 3 = 0). 
We neglect the effect of jet splash [7]. The flow in question is assumed to be potential. 

Thus the problem concerning the penetration of a body, whose surface is defined by a 
function f(x l, x2), may be reduced to the problem of determining the velocity potential 
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QD (x, t) and wetted region G(t), satisfying the following conditions: 

Laplace' s equation 

(a~/o~ + a~-/ax~ + a~ �9 (x, t) -- 0 v (x~, ~,, ~)  ~ ~$; (1.  l )  

b o u n d a r y  c o n d i t i o n s  on t h e  p l a n e  x 3 = 0 

0 r  (xx, x2, 0, t)/Oxa = V (t),. (x~, x.,.) ~ G (t), ( 1 . 2 )  

(D (xx, x~, 0, t ) =  0, ( x ,  x . , ) ~  R-~ (t); 

conditions at infinity 

(I) (X, t)---~0 and ~(~9 (X, t)/OX{-"~O as ~ / x l  2 -~- X22 -~- 2 2 . ~  oo, ( 1 . 3 )  

~ = ~ , 2 , 3  

We assume that at time t = 0 the fluid is quiescent and that for t > 0 it is in motion. 

The wetted region is obtained from a kinematic relationship due to Wagner connecting 
the rising motion of a free surface fluid particle with the motion of the body: 

t 

axa , d~', (1.4) 
0 

(x~ (t), x*z (t)) ~ OG (t) 

(SG(t) is the boundary of the open wetted region G(t)). 

Pressure p in the fluid is determined from the linearized Cauchy--Lagrange equation [i0] 

p (x~ t) = --pa~ (x, t)/Ot ( 1 . 5 )  

(p is the density fo the fluid); force P resisting penetration of the body is given by the 
expression 

G(t) 

2. Identification of a Class of Self-Similar Solutions. We seek a solution of the 
penetration problem in the class of functions having the following property for arbitrary posi- 
tive % at each point x : 

t). (2.1) 

H e r e  a z ,  a 2 ,  a s ,  $ a r e  w e i g h t s  f o r  c o o r d i n a t e s  x~ ,  x2 ,  x 3 and  t i m e  t ,  r e s p e c t i v e l y .  I n  p a r -  
t i c u l a r ,  i f  a 1 = a 2 = a 3 = 1,  t h e n  f o r  X = t - ( z / P ) ,  i t  f o l l o w s  f r o m  Eq. ( 2 . 1 )  t h a t  ~ ( x ~ ,  x2, 
x~, t) = g-l[t-( i /g)] �9 (xffP/~, x2/tl /~,~/t~/~, 1) , i . e . ,  t h e  s o l u t i o n  i s  s e l f - s i m i l a r .  

R e m a r k .  I f  a f u n c t i o n  $ o f  n v a r i a b l e s  s a t i s f i e s  t h e  c o n d i t i o n  

then 

Actually, 
the form 

( a1 ) (2 2)  q) )~ x~, . . . ,  )~'~x,~ = g ()q r (x~ . . . .  , x,0 V)~ > 0, Vx ~ R ' ,  

g (%) = )k (]r is a constant). 

if we write ~ in the form %~-%1 (%/%1) (~I> 0), 

(~%) = g (~)  g (~/~)  �9 (x). 

From Eqs. (2.2) and (2.4) it follows that g(X)/g(~1) = g(~/~z)" 
tions from dimensionality theory [6], we obtain formula (2.3). 

(2.3) 

condition (2.2) then assumes 

(2.4) 

Following standard calcula- 
It is known [ii] that a func- 

tion~, which satisfies condition (2.1) (with relation (2.3) taken into account), is cilled 
a quasihomogeneous function of degree k with weights ~ = (az, ..., a n) for its variables. A 
search for a solution of problem (1.1)-(1.4) in the form of a quasi-homogeneous function 
allows us to identify conditions under which the problem in question is self-similar and leads 
us to the following theorem. 
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THEOREM i. For the problem under investigation let the form of the penetrating body 
be defined by the function x 3 = -f(xl, x2), (where f(xl, x 2) is a positive homogeneous func- 
tion of degree d, d~i), and let the penetration velocity be a power function of the form 
V(t) = v0 t=, a~0 . Then if the: solution of problem (1.1)-(1.5) is given at time t I by CO(x, 
tl) and G(tl), then at any other time t the solution of the problem is determined in accord- 
ance with the similarity relations 

CO (x,: t) = ~--[~(d+O+~1/(~+O CO (kx, tl); 

[(xl, x2) ~ G (t)] .~- [(~x~, gx2) ~ G (tDl, 

(2.5) 

(2.6) 

where I = (t/tl) -(a+l)/d, i.e., t I = kd/(a+1)t. 

Theorem i may be proved by a direct substitution of expressions (2.5) and (2.6) into 
Eqs. (1.1)-(1.5). 

COROLLARY. Velocities of the fluid particles and pressure in the fluid at time t are 
determined from the formulas 

v (x, t) = ~-"~/(a+~)v ( ix ,  t~), p (x, t) = ~--L.+~+d (a--l)]/(a+l)p (~X, tl). ( 2 . 7 ) .  

The following qualitative results (valid under the assumptions made above) follow from 
Theorem i: i) the dimension s of the wetted region varies directly with time to the power 
(a + 1)/d; 2) the area of the wetted region varies directly with time to the power 2(a + l)/d; 
3) the force P, acting on the penetrating body from the fluid side, is directly proportional 
to time raised to the power [(3a+ i) + (a - l)d]/d. 

Actually, it follows from relation (2.6) that the size of the contact area is directly 
proportional to X-l, whence, substituting the value ~ for t I = i, we obtain the first result 
and, from it, the second, since the area of the region is proportional to the square of a 
linear dimension. The third result comes about from substituting relations (2.7) into Eq. 
(1.6) and integrating the resulting expression, taking relation (2.6) into account. 

Remarks. i. Results 1-3 for a = 0 and d = i were obtained in [6] from dimensionality 
theory. 2. Theorems analogous to Theorem i are valid for other media also: for example, 
in a contact problem of linear elasticity theory (in the isotropic case, see [12, 13]); in 
a contact problem involving contact of pre-deformed elastic halfspaces [14]; in dynamic con- 
tact problems for compressible media (an elastic halfspace, a compressible fluid halfspace). 
Here the exponent a in the penetraton velocity is inflexibly connected with the degree of 
homogeneity of the function defining the shape of the body: a = d - i. 

3. Solution of the Inverse Problem. We consider the problem inverse to the penetra- 
tion problem, i.e., we are required to find the form of the penetrating body, given the ve- 
locity potential and the region of wetting. Validity of the following theorem can be readily 
verified directly. 

THEOREM 2. Let us assume that in the halfspace z~>~0 we know a harmonic function 
F such that it and its gradient vanish at infinity and that in an open simply connected domain 
G(1), lying in the plane x 3 = 0 and containing the coordinate origin, the function F satisfies 
the conditions 

0 f  (Xl, X2, 0)/0Z 3 = t ,  (Xl, X2) ~ G (t),  f (Xl, x2, 0) = 01 
(x. z~) ~ m\G (i). (3 .1)  

Let ~ (t) be an arbitrary positive smooth monotonically decreasing function, where 
~-+oo as t + 0, and ~(1)= i~ . Then the potential 

CO (x, t) = V (t) f (~ (t) x)/~ (t) ( 3 . 2 )  

yields the solution of problem (1.1)-(1.4) describing penetration of a body into an ideal in- 
compressible fluid with velocity V(t), where the fuflction fl describing the form of the body 
is given by the expression 

I1 ( x L  x : )  = r (~) t - o (~ (~) x~) 
0 
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Here the wetted region G(t) is obtained from G(1) by a homothetic transformation with center 
at the coordinate origin: (xl, x2) ~ G (t)~=~(~ (t) x I, ~ (t) x=) ~ G (I) . Here t(x~, x~) is the time 
it takes the corresponding point of the boundary of the region G(1) to go into the point (x~, 
x~) lying on the boundary of the region G(t), i.e., x~(1)=x~(t)~(t)~ i= i, 2 

4. Solution of the Inverse Problem for an Elliptic Wetted Region. It is known [15] 
from the problem concerning flow over an elliptic plate by a potential flow that the function 

F (x~, ~ ,  x9  = (~ - ~)  ~ ~ 2E(e) ~z/2 (1 + ~)~/2 (I -- e 2 +  ~)~12 (4. i) 

is harmonic in the halfspace x3~0 and vanishes at infinity. In addition, the function F 
satisfies conditions (3.1), where G(1) is an ellipse with semiaxes a(1) = i, b(1) = Jl - e 2, 
and e is its eccentricity. Here ~(xl, x2, x 3) is a function which is equal to zero for (xl, 
x2)~G (I), x a = 0 and equal to the positive root of the equation 

(4.2) 

in the contrary case. Function E(e) is determined from the expression E(e) = .!' ~/i--e~sin~d~. 
0 

If in Eq. (4.1) we calculate the derivative 8F/3x 3 at x 3 = 0 and express the integral 
appearing in the resulting expression in terms of an elliptic integral, we have 

? 

(xl, x 2 ) ~ B  ~ \ G ( I ) ,  E (e, ?) ---- ~ W l - e  2sin 2~d~, 37= arcsin 
0 

]/~- i " 

(4.3) 

We find from Eq. (4.3) and Theorem 2 that the velocity potential 
oo 

q) (x~, x2, x3, t) = v (t) (~- ~2) f ~ (t) x~d~ 
q) (t) 2E (e) ~:~/2 (i + ~)1t2 (t --e 2 + ~)1/~ 

to(c~(Ox) 

gives the solution of the problem for a body penetrating at velocity V(t) (here the wetted 
region is an ellipse expanding homothetically according to the law ~ (t)), the function defin- 
ing the form of the body being given by the expression 

t(r) 
f { 1 [ ]/rco(~r, cz, O) + !t = e2 __ E (e, , )  l}  d L ( 4 . 4 )  

/ ( r , a ) =  V(~) t @~-~)- ]/e)(q)r,a,O)lo('Tr, a,O)_}_t] 
o 

Here we have used polar coordinates r, a(r=']/-ffl+x.~, x [  ---- r c o s  o~, xz-----rsina). We note, from 
Eq. (4.2) with x 3 = 0, that 

co (qDr, (z, O) = (~r)~ -- (2 -- e 2) -~ V ~  -~- (q)r) 4 -- 2e 2 cos 2a ((pr) 2 
2 

cr  = ~ ('c)/,~(t). 

, (4.5) 

In particular, if we take a function describing the wetted region in the form r(t) = ~-I (t) 
t (a+n/a, e~O, d~1 , and the velocity V(t) in the form V(t) = v0t a, we then find from Eq. 
(4.4) that the shape of the body may be described by a homogeneous function of degree d: 

I (r, a) = c (a) r a ( 4 . 6 )  

] 

f{ I} (c(~)= u o ~a i +E--~- 9(~+I) E(e,y(~)) d$ is a positive function of angle ~). Here 
O 

the function ~ is given by expression (4.5) and ~(~) is obtained from Eq. (4.3), in which it 
is necessary to put ~r = ~-(~+,)/d 
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Remarks. i. For a = 0, d = 2 we obtain the exact solution of a self-similar problem, 
in the Wagner formulation, for the case of penetration of a body into an incompressible fluid 
at constant velocity when the shape of the body is described by a homogeneous function of the 
second degree (4.6). 2. In the problem involving contact of a convex solid body with an iso- 
tropic elastic halfspace in the Hertz formulation (see, for example, [12, 13]) analogous to 
the penetration problem considered, it is assumed that the shape of an arbitrary body can be 
described by an elliptic paraboloid. Moreover, it is shown that the contact region is an 
ellipse. But if the problem of penetration of an elliptic paraboloid is considered in the 
Wagner formulation, the problem becomes a self-similar one (see Theorem i); however, the region 
of interaction will be other than elliptical. 3. In the case of a circular region of interac- 
tion, the solution of a problem involving immersion of an arbitrary body of revolution in an 
incompressible fluid can always be obtained explicitly [2, 9]. 

The author thanks A. G. Khovanskii for useful discussions of this paper. 
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